Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

Colloques du Collège de France - Collège de France

Colloque - Michel Ferrero : Origin and Fate of the Pseudogap in the Doped Hubbard Model: A Diagrammatic Monte Carlo Study

04 Jun 2025

Description

Antoine GeorgesPhysique de la matière condenséeAnnée 2024-2025Colloque : Recent Advances and Applications of Diagrammatic Monte Carlo for FermionsMichel Ferrero : Origin and Fate of the Pseudogap in the Doped Hubbard Model: A Diagrammatic Monte Carlo StudyMichel FerreroÉcole Polytechnique, CPHT, Collège de FranceRésuméIn this seminar, I will introduce the diagrammatic Monte Carlo method and discuss its application to the two-dimensional Hubbard model at finite temperature. The results obtained through this approach are controlled and, importantly, address the infinite-size limit of the model, thus yielding physical quantities with arbitrary momentum resolution. This enables a detailed investigation of the impact of electronic correlations on the spectral properties, with a particular focus on the Fermi surface topology and the pseudogap regime. We demonstrate the selective suppression of quasiparticle excitations near the antinodal regions due to the development of magnetic correlations, observed both in the weak coupling regime with a large correlation length and in the strong coupling regime with a shorter correlation length. Furthermore, I will discuss how a modified spin-fluctuation theory can account for these findings. Finally, the evolution of the pseudogap regime with decreasing temperature will be examined, revealing its instability and eventual transition into an ordered stripe phase, consistent with ground-state calculations.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.