Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

Data Science Deep Dive

#61: Technologische Must-Haves: Unser Survival-Guide für Data-Science-Projekte

05 Dec 2024

Description

Zusammenfassend unsere Must-Haves: Datenbank / DWH  Lösung zur Datenvisualisierung Möglichkeit, unkompliziert zu entwickeln (lokal oder im Web) Versionskontrolle / CI/CD Deployment-Lösung Trennung von Entwicklungs- und Produktivumgebung Monitoring für Modell & Ressourcen   Verwandte Podcast-Episoden Folge #2: Erfolgsfaktoren für Predictive Analytics Projekte Folge #5: Data Warehouse vs. Data Lake vs. Data Mesh Folge #20: Ist Continuous Integration (CI) ein Muss für Data Scientists? Folge #21: Machine Learning Operations (MLOps) Folge #29: Die Qual der Wahl: Data Science Plattform vs. Customized Stack Folge #35: Erfolgsfaktoren für Machine Learning Projekte mit Philipp Jackmuth von dida Folge #43: Damit es im Live-Betrieb nicht kracht: Vermeidung von Overfitting & Data Leakage Folge #54: Modell-Deployment: Wie bringe ich mein Modell in die Produktion?   Technologien & Tools Datenvisualisierung: Azure Databricks, AWS Quicksight, Redash Entwicklungsumgebung: VSCode, INWT Python IDE V2, Remote Explorer, Pycharm Versionskontrolle: GitHub, GitLab, Azure DevOps CI/CD: GitHub Actions, GitLab CI, Jenkins Deployment: Kubernetes, Docker, Helm, ArgoCD Experiment-Tracking: MLFlow, DVC, Tensorboard Monitoring: Prometheus, Grafana, AWS Cloudwatch

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.