Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

DataFramed

#175 Inside Algorithmic Trading with Anthony Markham, Vice President, Quantitative Developer at Deutsche Bank

22 Jan 2024

Description

In January 2024, six activists were identified by British Police in London, suspected of planning to disrupt the London Stock Exchange through a lock-in. In an attempt to prevent the building from opening for trading. Despite the foiled attempt, the strategy for this protest was inherently flawed. Trading no longer requires a busy exchange with raucous shouting and phone calls to facilitate the flow of investment around the world. Nowadays, machines can trade at a fraction of a second, ingesting huge amounts of real-time data to execute finely tuned-trading strategies. But who programs these trading machines, how do we assess risk when trading at such a high volume and in such short periods of time?Anthony Markham is Vice President, Quantitative Developer at Deutsche Bank. With a background in Aerospace and Software Engineering, Anthony has experience in Data Science, facial recognition research, tertiary education, and Quantitative Finance, developing mostly in Python, Julia, and C++. When not working, Anthony enjoys working on personal projects, flying aircraft, and playing sports.In the episode, Richie and Anthony cover what algorithmic trading is, the use of machine learning techniques in trading strategies, the challenges of handling large datasets with low latency, risk management in algorithmic trading, data analysis techniques for handling time series data, the challenges of deep neural networks in trading, the diverse roles and skills of those who work in algorithmic trading and much more. Links Mentioned in the Show:Flash crash of 2010KDB+Q Query Language[Course] Quantitative Risk Management in PythonUnderstanding Value at Risk (VaR)

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.