Deep Dive - Frontier AI with Dr. Jerry A. Smith
Why Your AI Agent Can’t Think Fast Enough (And How PCA Fixes It)
01 Aug 2025
Medium Article: https://medium.com/@jsmith0475/why-your-ai-agent-cant-think-fast-enough-and-how-pca-fixes-it-aa4dc00bbbff The article by Dr. Jerry A. Smith examines the critical role of Principal Component Analysis (PCA) in advancing agentic AI systems, which are designed for autonomous, goal-driven behavior. It highlights how PCA, a classical linear dimensionality reduction technique, efficiently tackles the "curse of dimensionality" by simplifying complex, high-dimensional data, thereby accelerating agent learning and enhancing computational efficiency. The author also discusses PCA's limitations, such as its linearity and sensitivity to outliers, introducing alternative non-linear techniques like Autoencoders and Manifold Learning for scenarios where complex data relationships prevail. Ultimately, it advocates for strategic, often hybrid, applications of these methods to enable robust and scalable real-world agentic AI deployments.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
3ª PARTE | 17 DIC 2025 | EL PARTIDAZO DE COPE
01 Jan 1970
El Partidazo de COPE
13:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
12:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
10:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
13:00H | 20 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
12:00H | 20 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana