Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

DEF CON 23 [Audio] Speeches from the Hacker Convention

John Seymour - "Quantum" Classification of Malware

23 Oct 2015

Description

Materials Available here: https://media.defcon.org/DEF%20CON%2023/DEF%20CON%2023%20presentations/DEFCON-23-John-Seymour-Quantum-Classification-of-Malware-UPDATED.pdf Whitepaper here: https://media.defcon.org/DEF%20CON%2023/DEF%20CON%2023%20presentations/DEFCON-23-John-Seymour-Quantum-Classification-of-Malware-WP-UPDATED.pdf "Quantum" Classification of Malware John Seymour Ph.D. student, University of Maryland, Baltimore County Quantum computation has recently become an important area for security research, with its applications to factoring large numbers and secure communication. In practice, only one company (D-Wave) has claimed to create a quantum computer which can solve relatively hard problems, and that claim has been met with much skepticism. Regardless of whether it is using quantum effects for computation or not, the D-Wave architecture cannot run the standard quantum algorithms, such as Grover’s and Shor’s. The D-Wave architecture is instead purported to be useful for machine learning and for heuristically solving NP-Complete problems. We'll show why the D-Wave and the machine learning problem for malware classification seem especially suited for each other. We also explain how to translate the classification problem for malicious executables into an optimization problem which a D-Wave machine can solve. Specifically, using a 512-qubit D-Wave Two processor, we show that a minimalist malware classifier, with cross-validation accuracy comparable to standard machine learning algorithms, can be created. However, even such a minimalist classifier incurs a surprising level of overhead. John Seymour is a Ph.D. student at the University of Maryland, Baltimore County, where he performs research at the intersection of machine learning and information security. He's mostly interested in avoiding and helping others avoid some of the major pitfalls in machine learning, especially in dataset preparation (seriously, do people still use malware datasets from 1998?) In 2014, he completed his Master’s thesis on the subject of quantum computation applied to malware analysis. He currently works at CyberPoint International, a company which performs network and host-based machine learning, located in Baltimore, MD.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.