Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

Department of Statistics

Do Simpler Models Exist and How Can We Find Them?

29 Jul 2021

Description

Cynthia Rudin (Duke University) gives a OxCSML Seminar on Friday 14th May 2021. Abstract: While the trend in machine learning has tended towards more complex hypothesis spaces, it is not clear that this extra complexity is always necessary or helpful for many domains. In particular, models and their predictions are often made easier to understand by adding interpretability constraints. These constraints shrink the hypothesis space; that is, they make the model simpler. Statistical learning theory suggests that generalization may be improved as a result as well. However, adding extra constraints can make optimization (exponentially) harder. For instance it is much easier in practice to create an accurate neural network than an accurate and sparse decision tree. We address the following question: Can we show that a simple-but-accurate machine learning model might exist for our problem, before actually finding it? If the answer is promising, it would then be worthwhile to solve the harder constrained optimization problem to find such a model. In this talk, I present an easy calculation to check for the possibility of a simpler model. This calculation indicates that simpler-but-accurate models do exist in practice more often than you might think. This talk is mainly based on the following paper Lesia Semenova, Cynthia Rudin, and Ron Parr. A Study in Rashomon Curves and Volumes: A New Perspective on Generalization and Model Simplicity in Machine Learning. In progress, 2020. https://arxiv.org/abs/1908.01755

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.