Department of Statistics
Practical pre-asymptotic diagnostic of Monte Carlo estimates in Bayesian inference and machine learning
29 Jul 2021
Aki Vehtari (Aalto University) gives the OxCSML Seminar on Friday 7th May 2021 Abstract: I discuss the use of the Pareto-k diagnostic as a simple and practical approach for estimating both the required minimum sample size and empirical pre-asymptotic convergence rate for Monte Carlo estimates. Even when by construction a Monte Carlo estimate has finite variance the pre-asymptotic behaviour and convergence rate can be very different from the asymptotic behaviour following the central limit theorem. I demonstrate with practical examples in importance sampling, stochastic optimization, and variational inference, which are commonly used in Bayesian inference and machine learning.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
3ª PARTE | 17 DIC 2025 | EL PARTIDAZO DE COPE
01 Jan 1970
El Partidazo de COPE
13:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
12:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
10:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
13:00H | 20 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
12:00H | 20 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana