OxCSML Seminar - Friday 28th May 2021, presented by Alexandra Carpentier (University of Magdeburg). In this talk we will discuss the thresholding bandit problem, i.e. a sequential learning setting where the learner samples sequentially K unknown distributions for T times, and aims at outputting at the end the set of distributions whose means \mu_k are above a threshold \tau. We will study this problem under four structural assumptions, i.e. shape constraints: that the sequence of means is monotone, unimodal, concave, or unstructured (vanilla case). We will provide in each case minimax results on the performance of any strategies, as well as matching algorithms. This will highlight the fact that even more than in batch learning, structural assumptions have a huge impact in sequential learning.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
3ª PARTE | 17 DIC 2025 | EL PARTIDAZO DE COPE
01 Jan 1970
El Partidazo de COPE
13:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
12:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
10:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
13:00H | 20 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
12:00H | 20 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana