Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

Department of Statistics

Veridical Data Science for biomedical discovery: detecting epistatic interactions with epiTree

26 Feb 2021

Description

Bin Yu, Chancellor's Professor, Departments of Statistics and Electrical Engineering and Computer Science, UC Berkeley, gives a seminar for the Department of Statistics. 'A.I. is like nuclear energy - both promising and dangerous' - Bill Gates, 2019. Data Science is a pillar of A.I. and has driven most of recent cutting-edge discoveries in biomedical research. In practice, Data Science has a life cycle (DSLC) that includes problem formulation, data collection, data cleaning, modeling, result interpretation and the drawing of conclusions. Human judgement calls are ubiquitous at every step of this process, e.g., in choosing data cleaning methods, predictive algorithms and data perturbations. Such judgment calls are often responsible for the "dangers" of A.I. To maximally mitigate these dangers, we developed a framework based on three core principles: Predictability, Computability and Stability (PCS). Through a workflow and documentation (in R Markdown or Jupyter Notebook) that allows one to manage the whole DSLC, the PCS framework unifies, streamlines and expands on the best practices of machine learning and statistics - bringing us a step forward towards veridical Data Science. In this lecture, we will illustrate the PCS framework through the epiTree; a pipeline to discover epistasis interactions from genomics data. epiTree addresses issues of scaling of penetrance through decision trees, significance calling through PCS p-values, and combinatorial search over interactions through iterative random forests (which is a special case of PCS). Using UK Biobank data, we validate the epiTree pipeline through an application to the red-hair phenotype, where several genes are known to display epistatic interactions.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.