Confluent Developer ft. Tim Berglund, Adi Polak & Viktor Gamov
Scaling Apache Kafka Clusters on Confluent Cloud ft. Ajit Yagaty and Aashish Kohli
11 May 2022
How much can Apache Kafka® scale horizontally, and how can you automatically balance, or rebalance data to ensure optimal performance?You may require the flexibility to scale or shrink your Kafka clusters based on demand. With experience engineering cluster elasticity and capacity management features for cloud-native Kafka, Ajit Yagaty (Confluent Cloud Control Plane Engineering) and Aashish Kohli (Confluent Cloud Product Management) join Kris Jenkins in this episode to explain how the architecture of Confluent Cloud supports elasticity. Kris suggests that optimal elasticity is like water from a faucet—you should be able to quickly obtain as many resources as you need, but at the same time you don't want the slightest amount to go wasted. But how do you specify the amount of capacity by which to adjust, and how do you know when it's necessary?Aashish begins by explaining how elasticity on Confluent Cloud has come a long way since the early days of scaling via support tickets. It's now self-serve and can be accomplished by dialing up or down a desired number of CKUs, or Confluent Units of Kafka. A CKU corresponds to a specific amount of Kafka resources and has been made to be consistent across all three major clouds. You can specify the number of CKUs you need via API, CLI or Confluent Cloud UI. Ajit explains in detail how, once your request has been made, cluster resizing is a two-step process. First, capacity is added, and then your data is rebalanced. Rebalancing data on the cluster is critical to ensuring that optimal performance is derived from the available capacity. The amount of time it takes to resize a Kafka cluster depends on the number of CKUs being added or removed, as well as the amount of data to be rebalanced. Of course, to request more or fewer CKUs in the first place, you have to know when it's necessary for your Kafka cluster(s). This can be challenging as clusters emit a large variety of metrics. Fortunately, there is a single composite metric that you can monitor to help you decide, as Ajit imparts on the episode. Other topics covered by the trio include an in-depth explanation of how Confluent Cloud achieves elasticity under the hood (separate control and data planes, along with some Kafka dogfooding), future plans for autoscaling elasticity, scenarios where elasticity is critical, and much more.EPISODE LINKSHow to Elastically Scale Apache Kafka Clusters on Confluent CloudShrink a Dedicated Kafka Cluster in Confluent CloudElastic Apache Kafka Clusters in Confluent CloudWatch the video version of this podcastKris Jenkins’ TwitterSEASON 2 Hosted by Tim Berglund, Adi Polak and Viktor Gamov Produced and Edited by Noelle Gallagher, Peter Furia and Nurie Mohamed Music by Coastal Kites Artwork by Phil Vo 🎧 Subscribe to Confluent Developer wherever you listen to podcasts. ▶️ Subscribe on YouTube, and hit the 🔔 to catch new episodes. 👍 If you enjoyed this, please leave us a rating. 🎧 Confluent also has a podcast for tech leaders: "Life Is But A Stream" hosted by our friend, Joseph Morais.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
3ª PARTE | 17 DIC 2025 | EL PARTIDAZO DE COPE
01 Jan 1970
El Partidazo de COPE
13:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
12:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
10:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
13:00H | 20 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
12:00H | 20 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana