这些研究聚焦于细胞和组织生物学的因果基础模型,旨在通过高通量扰动筛选和人工智能/机器学习(AI/ML)技术来理解复杂的分子回路。文章讨论了诸如Perturb-seq和光学池化筛选(OPS)等实验方法如何从单一表型读取发展到高内容、多模态的读数,从而能更全面地捕捉细胞状态。随着实验规模的扩大和计算能力的增强,特别是在处理非线性遗传相互作用方面,现在有可能构建能够预测未测试扰动结果的生成模型。最终,这些进展为创建一个全面的扰动细胞图谱奠定了基础,该图谱将补充现有的观测性人类细胞图谱,并统一我们对基因、细胞和组织运作方式的理解,从而推动生物学和医学的发现。References: Rood J E, Hupalowska A, Regev A. Toward a foundation model of causal cell and tissue biology with a Perturbation Cell and Tissue Atlas[J]. Cell, 2024, 187(17): 4520-4545.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
Trump $82 Million Bond Spree, Brazil Tariffs 'Too High,' More
16 Nov 2025
Bloomberg News Now
Ex-Fed Gov Resigned After Rules Violations, Trump Buys $82 Mil of Bonds, More
16 Nov 2025
Bloomberg News Now
THIS TRUMP INTERVIEW WAS INSANE!
16 Nov 2025
HasanAbi
Epstein Emails and Trump's Alleged Involvement
15 Nov 2025
Conspiracy Theories Exploring The Unseen
New Epstein Emails Directly Implicate Trump - H3 Show #211
15 Nov 2025
H3 Podcast
Trump Humiliates Himself on FOX as They Call Him Out
15 Nov 2025
IHIP News