这篇来自诺奖得主David Baker组最新的Science研究论文介绍了预测人类蛋白质-蛋白质相互作用(PPI)的系统性方法,旨在克服现有实验和计算方法的局限性。研究人员通过两个关键创新显著提高了预测精度和效率:首先,他们利用7倍更深的多序列比对(MSAs),直接从大量未组装的真核基因组数据中获取更强的共进化信号,创建了omicMSA。其次,他们开发了一种名为RoseTTAFold2-PPI (RF2-PPI)的快速深度学习网络,该网络利用从AlphaFold数据库中提取的结构域-结构域相互作用(DDI)数据进行训练,训练数据集规模扩大了17倍。通过结合RF2-PPI的快速筛选能力和AlphaFold2的准确三维建模,研究团队系统筛选了超过1.91亿个人类蛋白质对,最终预测出17,849个高置信度PPI,其中包括3,631个先前未知的相互作用,特别是在跨膜蛋白中,这些发现为理解人类疾病的分子机制提供了新的见解。References: Zhang J, Humphreys I R, Pei J, et al. Predicting protein-protein interactions in the human proteome[J]. Science, 2025: eadt1630.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
Trump $82 Million Bond Spree, Brazil Tariffs 'Too High,' More
16 Nov 2025
Bloomberg News Now
Ex-Fed Gov Resigned After Rules Violations, Trump Buys $82 Mil of Bonds, More
16 Nov 2025
Bloomberg News Now
THIS TRUMP INTERVIEW WAS INSANE!
16 Nov 2025
HasanAbi
Epstein Emails and Trump's Alleged Involvement
15 Nov 2025
Conspiracy Theories Exploring The Unseen
New Epstein Emails Directly Implicate Trump - H3 Show #211
15 Nov 2025
H3 Podcast
Trump Humiliates Himself on FOX as They Call Him Out
15 Nov 2025
IHIP News