Yann LeCun
👤 PersonAppearances Over Time
Podcast Appearances
You're not going to be able to predict all the details of objects that appear in the view, obviously, but at an abstract representation level, you can probably predict what's going to happen. So now what you have is...
You're not going to be able to predict all the details of objects that appear in the view, obviously, but at an abstract representation level, you can probably predict what's going to happen. So now what you have is...
an internal model that says, here is my idea of state of the world at time t, here is an action I'm taking, here is a prediction of the state of the world at time t plus one, t plus delta t, t plus two seconds, whatever it is. If you have a model of this type, you can use it for planning.
an internal model that says, here is my idea of state of the world at time t, here is an action I'm taking, here is a prediction of the state of the world at time t plus one, t plus delta t, t plus two seconds, whatever it is. If you have a model of this type, you can use it for planning.
an internal model that says, here is my idea of state of the world at time t, here is an action I'm taking, here is a prediction of the state of the world at time t plus one, t plus delta t, t plus two seconds, whatever it is. If you have a model of this type, you can use it for planning.
So now you can do what LLMs cannot do, which is planning what you're going to do so as to arrive at a particular outcome or satisfy a particular objective. So you can have a number of objectives. I can predict that if I have an object like this and I open my hand, it's going to fall. And if I push it with a particular force on the table, it's going to move.
So now you can do what LLMs cannot do, which is planning what you're going to do so as to arrive at a particular outcome or satisfy a particular objective. So you can have a number of objectives. I can predict that if I have an object like this and I open my hand, it's going to fall. And if I push it with a particular force on the table, it's going to move.
So now you can do what LLMs cannot do, which is planning what you're going to do so as to arrive at a particular outcome or satisfy a particular objective. So you can have a number of objectives. I can predict that if I have an object like this and I open my hand, it's going to fall. And if I push it with a particular force on the table, it's going to move.
If I push the table itself, it's probably not going to move with the same force. So we have this internal model of the world in our mind, which allows us to plan sequences of actions to arrive at a particular goal. And so now if you have this world model, we can imagine a sequence of actions, predict what the outcome of the sequence of action is going to be,
If I push the table itself, it's probably not going to move with the same force. So we have this internal model of the world in our mind, which allows us to plan sequences of actions to arrive at a particular goal. And so now if you have this world model, we can imagine a sequence of actions, predict what the outcome of the sequence of action is going to be,
If I push the table itself, it's probably not going to move with the same force. So we have this internal model of the world in our mind, which allows us to plan sequences of actions to arrive at a particular goal. And so now if you have this world model, we can imagine a sequence of actions, predict what the outcome of the sequence of action is going to be,
measure to what extent the final state satisfies a particular objective, like moving the bottle to the left of the table, and then plan a sequence of actions that will minimize this objective at runtime. We're not talking about learning, we're talking about inference time. So this is planning, really. And in optimal control, this is a very classical thing. It's called model predictive control.
measure to what extent the final state satisfies a particular objective, like moving the bottle to the left of the table, and then plan a sequence of actions that will minimize this objective at runtime. We're not talking about learning, we're talking about inference time. So this is planning, really. And in optimal control, this is a very classical thing. It's called model predictive control.
measure to what extent the final state satisfies a particular objective, like moving the bottle to the left of the table, and then plan a sequence of actions that will minimize this objective at runtime. We're not talking about learning, we're talking about inference time. So this is planning, really. And in optimal control, this is a very classical thing. It's called model predictive control.
You have a model of the system you want to control that can predict the sequence of states corresponding to a sequence of commands. And you're planning a sequence of commands so that, according to your world model, the end state of the system will satisfy an objective that you fix. This is the way...
You have a model of the system you want to control that can predict the sequence of states corresponding to a sequence of commands. And you're planning a sequence of commands so that, according to your world model, the end state of the system will satisfy an objective that you fix. This is the way...
You have a model of the system you want to control that can predict the sequence of states corresponding to a sequence of commands. And you're planning a sequence of commands so that, according to your world model, the end state of the system will satisfy an objective that you fix. This is the way...
Rocket trajectories have been planned since computers have been around, so since the early 60s, essentially.
Rocket trajectories have been planned since computers have been around, so since the early 60s, essentially.
Rocket trajectories have been planned since computers have been around, so since the early 60s, essentially.