Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

Advances in Care

Data Mining: Using Machine Learning for Predictive Neurocritical Care

16 May 2024

Description

Monitoring patients with aneurysmal rupture for delayed cerebral ischemia was historically a numbers game. It was difficult for doctors to predict outcomes in the weeks that followed their rupture, so at-risk patients could find themselves under observation in the ICU anywhere from 7 to 21 days. Dr. Soojin Park, Medical Director of Critical Care Data Science and AI at NewYork-Presbyterian/Columbia, knew there had to be a better way to monitor patients and predict outcomes. So, relying on her background in machine learning and leveraging vast amounts of data, Dr. Park developed the potentially game-changing Continuous Monitoring Tool for Delayed Cerebral Ischemia (or COSMIC) score. The score uses machine learning, and basic patient data that can be collected with equipment available at any hospital, to detect signals that more accurately assess risk, allowing doctors to treat each neurocritical patient with targeted care - ultimately improving outcomes and patient experience.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.