Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

AI Breakdown

Beyond the 80/20 Rule: High-Entropy Minority Tokens Drive Effective Reinforcement Learning for LLM Reasoning

24 Sep 2025

Description

In this episode, we discuss Beyond the 80/20 Rule: High-Entropy Minority Tokens Drive Effective Reinforcement Learning for LLM Reasoning by Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen, Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen Yu, Gao Huang, Junyang Lin. This paper investigates Reinforcement Learning with Verifiable Rewards (RLVR) by analyzing token entropy patterns during Chain-of-Thought reasoning in Large Language Models. It finds that a small subset of high-entropy "forking" tokens critically guide reasoning pathways and that RLVR primarily adjusts these tokens to improve performance. Leveraging this insight, the authors enhance RLVR efficiency by focusing updates on these tokens, achieving better results with fewer token updates across multiple model scales.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.