In this episode, we discuss DeepSeek-OCR: Contexts Optical Compression by The authors of the paper are: **Haoran Wei, Yaofeng Sun, Yukun Li**. DeepSeek-OCR introduces a method to compress long text contexts into compact 2D vision tokens using a DeepEncoder and a decoder model, achieving high OCR accuracy even at significant compression ratios. It outperforms existing OCR benchmarks on OmniDocBench while using fewer vision tokens, demonstrating efficiency and scalability. The system is practical for large-scale training data generation and its code and models are publicly available.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Erich G. Anderer, Chief of the Division of Neurosurgery and Surgical Director of Perioperative Services at NYU Langone Hospital–Brooklyn
09 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Nolan Wessell, Assistant Professor and Well-being Co-Director, Department of Orthopedic Surgery, Division of Spine Surgery, University of Colorado School of Medicine
08 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
NPR News: 12-08-2025 2AM EST
08 Dec 2025
NPR News Now
NPR News: 12-08-2025 1AM EST
08 Dec 2025
NPR News Now