AI Breakdown
Learning When to Plan: Efficiently Allocating Test-Time Compute for LLM Agents
08 Sep 2025
In this episode, we discuss Learning When to Plan: Efficiently Allocating Test-Time Compute for LLM Agents by Davide Paglieri, Bartłomiej Cupiał, Jonathan Cook, Ulyana Piterbarg, Jens Tuyls, Edward Grefenstette, Jakob Nicolaus Foerster, Jack Parker-Holder, Tim Rocktäschel. The paper introduces a framework enabling large language model agents to dynamically decide when to plan during task execution, improving efficiency and performance. They propose a two-stage training process combining supervised fine-tuning and reinforcement learning to develop this capability. Experiments show these dynamically planning agents are more sample-efficient, achieve complex goals better, and can be guided by human plans.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Erich G. Anderer, Chief of the Division of Neurosurgery and Surgical Director of Perioperative Services at NYU Langone Hospital–Brooklyn
09 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Nolan Wessell, Assistant Professor and Well-being Co-Director, Department of Orthopedic Surgery, Division of Spine Surgery, University of Colorado School of Medicine
08 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
NPR News: 12-08-2025 2AM EST
08 Dec 2025
NPR News Now
NPR News: 12-08-2025 1AM EST
08 Dec 2025
NPR News Now