In this episode, we discuss Learning without training: The implicit dynamics of in-context learning by Benoit Dherin, Michael Munn, Hanna Mazzawi, Michael Wunder, Javier Gonzalvo. The paper investigates how Large Language Models (LLMs) can learn new patterns during inference without weight updates, a phenomenon called in-context learning. It proposes that the interaction between self-attention and MLP layers in transformer blocks enables implicit, context-dependent weight modifications. Through theoretical analysis and experiments, the authors show that this mechanism effectively produces low-rank weight updates, explaining the model's ability to learn from prompts alone.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Erich G. Anderer, Chief of the Division of Neurosurgery and Surgical Director of Perioperative Services at NYU Langone Hospital–Brooklyn
09 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Nolan Wessell, Assistant Professor and Well-being Co-Director, Department of Orthopedic Surgery, Division of Spine Surgery, University of Colorado School of Medicine
08 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
NPR News: 12-08-2025 2AM EST
08 Dec 2025
NPR News Now
NPR News: 12-08-2025 1AM EST
08 Dec 2025
NPR News Now