In this episode, we discuss Why Language Models Hallucinate by The authors of the paper are: - Adam Tauman Kalai - Ofir Nachum - Santosh S. Vempala - Edwin Zhang. The paper explains that hallucinations in large language models arise because training and evaluation reward guessing over admitting uncertainty, framing the issue as errors in binary classification. It shows that models become incentivized to produce plausible but incorrect answers to perform well on benchmarks. The authors propose that addressing hallucinations requires changing how benchmarks are scored, promoting more trustworthy AI by discouraging penalization of uncertain responses.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Erich G. Anderer, Chief of the Division of Neurosurgery and Surgical Director of Perioperative Services at NYU Langone Hospital–Brooklyn
09 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Nolan Wessell, Assistant Professor and Well-being Co-Director, Department of Orthopedic Surgery, Division of Spine Surgery, University of Colorado School of Medicine
08 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
NPR News: 12-08-2025 2AM EST
08 Dec 2025
NPR News Now
NPR News: 12-08-2025 1AM EST
08 Dec 2025
NPR News Now