Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

AI Odyssey

Unlocking the Secrets: How Much Do Language Models Memorize?

29 Jun 2025

Description

Ever wondered how much information your favorite AI language models, like GPT, actually retain from their training data? In this episode of AI Odyssey, we delve into groundbreaking research by John X. Morris, Chawin Sitawarin, Chuan Guo, Narine Kokhlikyan, G. Edward Suh, Alexander M. Rush, Kamalika Chaudhuri, and Saeed Mahloujifar. The authors introduce a new method for quantifying memorization in AI, distinguishing between unintended memorization (dataset-specific information) and generalization (knowledge of underlying data patterns). With findings revealing that models like GPT have a surprising capacity of about 3.6 bits per parameter, this study explores how memorization plateaus and eventually gives way to true understanding, a phenomenon known as "grokking."Created using Google's NotebookLM, this episode demystifies how language models balance memorization and generalization, offering fresh insights into model training and privacy implications.Dive deeper into the full paper here: https://www.arxiv.org/abs/2505.24832

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.