本期播客深入探讨了一项开创性的研究,该研究首次实现了使用4比特浮点数(FP4)对大型语言模型进行全面的量化训练。我们邀请了技术专家Weedge,共同讨论了这项技术如何通过优化FP4格式(如NVFP4)、创新的分裂式舍入策略以及一个关键的理论阈值,成功地在保持与BF16基线相当性能的同时,极大地提升了训练效率。我们将揭示FP4训练从理论到大规模实践的全过程,包括它如何巧妙地利用量化感知微调(QAF)来弥补最后的性能差距,预示着AI训练硬件和算法的下一个革命。
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Erich G. Anderer, Chief of the Division of Neurosurgery and Surgical Director of Perioperative Services at NYU Langone Hospital–Brooklyn
09 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Nolan Wessell, Assistant Professor and Well-being Co-Director, Department of Orthopedic Surgery, Division of Spine Surgery, University of Colorado School of Medicine
08 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
NPR News: 12-08-2025 2AM EST
08 Dec 2025
NPR News Now
NPR News: 12-08-2025 1AM EST
08 Dec 2025
NPR News Now