本期节目,我们将深入探讨Muon优化器,这个在神经网络隐藏层训练中表现卓越的新技术。它如何通过独特的正交化更新机制,显著提升CIFAR-10和NanoGPT等任务的训练速度,甚至超越AdamW等主流优化器?我们还将揭示其设计原理,包括Newton-Schulz迭代的巧妙应用、系数调优的奥秘,以及它如何有效解决优化器研究中常见的“基线不足”问题。此外,我们还将讨论其与Shampoo等先行者的异同,以及未来在大规模模型训练中的潜力。锁定AI Radio FM,一起探索AI加速训练的前沿!
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Erich G. Anderer, Chief of the Division of Neurosurgery and Surgical Director of Perioperative Services at NYU Langone Hospital–Brooklyn
09 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Nolan Wessell, Assistant Professor and Well-being Co-Director, Department of Orthopedic Surgery, Division of Spine Surgery, University of Colorado School of Medicine
08 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
NPR News: 12-08-2025 2AM EST
08 Dec 2025
NPR News Now
NPR News: 12-08-2025 1AM EST
08 Dec 2025
NPR News Now