AI: post transformers
Federated Post-Training LLMs: An Accessibility and Efficiency Survey
16 Sep 2025
This August 2025 paper examines the evolving landscape of Federated Large Language Models (FedLLM), focusing on how large language models are post-trained while preserving user data privacy. The authors introduce a novel taxonomy that categorizes FedLLM approaches based on model accessibility (white-box, gray-box, and black-box) and parameter efficiency. It highlights various techniques within these categories, such as adapter-based tuning and prompt tuning, which reduce computational and communication overhead. The paper also discusses the growing importance of inference-only black-box settings for future FedLLM development and identifies open challenges like federated value alignment and enhanced security in constrained environments.Source:https://arxiv.org/html/2508.16261v1
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Erich G. Anderer, Chief of the Division of Neurosurgery and Surgical Director of Perioperative Services at NYU Langone Hospital–Brooklyn
09 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Nolan Wessell, Assistant Professor and Well-being Co-Director, Department of Orthopedic Surgery, Division of Spine Surgery, University of Colorado School of Medicine
08 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
NPR News: 12-08-2025 2AM EST
08 Dec 2025
NPR News Now
NPR News: 12-08-2025 1AM EST
08 Dec 2025
NPR News Now