Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

AXRP - the AI X-risk Research Podcast

31 - Singular Learning Theory with Daniel Murfet

07 May 2024

Description

What's going on with deep learning? What sorts of models get learned, and what are the learning dynamics? Singular learning theory is a theory of Bayesian statistics broad enough in scope to encompass deep neural networks that may help answer these questions. In this episode, I speak with Daniel Murfet about this research program and what it tells us. Patreon: patreon.com/axrpodcast Ko-fi: ko-fi.com/axrpodcast Topics we discuss, and timestamps: 0:00:26 - What is singular learning theory? 0:16:00 - Phase transitions 0:35:12 - Estimating the local learning coefficient 0:44:37 - Singular learning theory and generalization 1:00:39 - Singular learning theory vs other deep learning theory 1:17:06 - How singular learning theory hit AI alignment 1:33:12 - Payoffs of singular learning theory for AI alignment 1:59:36 - Does singular learning theory advance AI capabilities? 2:13:02 - Open problems in singular learning theory for AI alignment 2:20:53 - What is the singular fluctuation? 2:25:33 - How geometry relates to information 2:30:13 - Following Daniel Murfet's work   The transcript: https://axrp.net/episode/2024/05/07/episode-31-singular-learning-theory-dan-murfet.html Daniel Murfet's twitter/X account: https://twitter.com/danielmurfet Developmental interpretability website: https://devinterp.com Developmental interpretability YouTube channel: https://www.youtube.com/@Devinterp   Main research discussed in this episode: - Developmental Landscape of In-Context Learning: https://arxiv.org/abs/2402.02364 - Estimating the Local Learning Coefficient at Scale: https://arxiv.org/abs/2402.03698 - Simple versus Short: Higher-order degeneracy and error-correction: https://www.lesswrong.com/posts/nWRj6Ey8e5siAEXbK/simple-versus-short-higher-order-degeneracy-and-error-1   Other links: - Algebraic Geometry and Statistical Learning Theory (the grey book): https://www.cambridge.org/core/books/algebraic-geometry-and-statistical-learning-theory/9C8FD1BDC817E2FC79117C7F41544A3A - Mathematical Theory of Bayesian Statistics (the green book): https://www.routledge.com/Mathematical-Theory-of-Bayesian-Statistics/Watanabe/p/book/9780367734817 In-context learning and induction heads: https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html - Saddle-to-Saddle Dynamics in Deep Linear Networks: Small Initialization Training, Symmetry, and Sparsity: https://arxiv.org/abs/2106.15933 - A mathematical theory of semantic development in deep neural networks: https://www.pnas.org/doi/abs/10.1073/pnas.1820226116 - Consideration on the Learning Efficiency Of Multiple-Layered Neural Networks with Linear Units: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4404877 - Neural Tangent Kernel: Convergence and Generalization in Neural Networks: https://arxiv.org/abs/1806.07572 - The Interpolating Information Criterion for Overparameterized Models: https://arxiv.org/abs/2307.07785 - Feature Learning in Infinite-Width Neural Networks: https://arxiv.org/abs/2011.14522 - A central AI alignment problem: capabilities generalization, and the sharp left turn: https://www.lesswrong.com/posts/GNhMPAWcfBCASy8e6/a-central-ai-alignment-problem-capabilities-generalization - Quantifying degeneracy in singular models via the learning coefficient: https://arxiv.org/abs/2308.12108   Episode art by Hamish Doodles: hamishdoodles.com

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.