In this episode of Data Skeptic's Recommender Systems series, host Kyle Polich explores DataRec, a new Python library designed to bring reproducibility and standardization to recommender systems research. Guest Alberto Carlo Maria Mancino, a postdoc researcher from Politecnico di Bari, Italy, discusses the challenges of dataset management in recommendation research—from version control issues to preprocessing inconsistencies—and how DataRec provides automated downloads, checksum verification, and standardized filtering strategies for popular datasets like MovieLens, Last.fm, and Amazon reviews. The conversation covers Alberto's research journey through knowledge graphs, graph-based recommenders, privacy considerations, and recommendation novelty. He explains why small modifications in datasets can significantly impact research outcomes, the importance of offline evaluation, and DataRec's vision as a lightweight library that integrates with existing frameworks rather than replacing them. Whether you're benchmarking new algorithms or exploring recommendation techniques, this episode offers practical insights into one of the most critical yet overlooked aspects of reproducible ML research.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
NPR News: 12-08-2025 2AM EST
08 Dec 2025
NPR News Now
NPR News: 12-07-2025 11PM EST
08 Dec 2025
NPR News Now
NPR News: 12-07-2025 10PM EST
08 Dec 2025
NPR News Now
Meidas Health: AAP President Strongly Pushes Back on Hepatitis B Vaccine Changes
08 Dec 2025
The MeidasTouch Podcast
Democrat Bobby Cole Discusses Race for Texas Governor
07 Dec 2025
The MeidasTouch Podcast
Fox News Crashes Out on Air Over Trump’s Rapid Fall
07 Dec 2025
The MeidasTouch Podcast