Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

Data Skeptic

Easily Fooling Deep Neural Networks

16 Jan 2015

Description

My guest this week is Anh Nguyen, a PhD student at the University of Wyoming working in the Evolving AI lab. The episode discusses the paper Deep Neural Networks are Easily Fooled [pdf] by Anh Nguyen, Jason Yosinski, and Jeff Clune. It describes a process for creating images that a trained deep neural network will mis-classify. If you have a deep neural network that has been trained to recognize certain types of objects in images, these "fooling" images can be constructed in a way which the network will mis-classify them. To a human observer, these fooling images often have no resemblance whatsoever to the assigned label. Previous work had shown that some images which appear to be unrecognizable white noise images to us can fool a deep neural network. This paper extends the result showing abstract images of shapes and colors, many of which have form (just not the one the network thinks) can also trick the network.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.