Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

Data Skeptic

[MINI] Bias Variance Tradeoff

13 Nov 2015

Description

A discussion of the expected number of cars at a stoplight frames today's discussion of the bias variance tradeoff. The central ideal of this concept relates to model complexity. A very simple model will likely generalize well from training to testing data, but will have a very high variance since it's simplicity can prevent it from capturing the relationship between the covariates and the output. As a model grows more and more complex, it may capture more of the underlying data but the risk that it overfits the training data and therefore does not generalize (is biased) increases. The tradeoff between minimizing variance and minimizing bias is an ongoing challenge for data scientists, and an important discussion for skeptics around how much we should trust models.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.