Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

Data Skeptic

[MINI] Markov Chains

20 Mar 2015

Description

This episode introduces the idea of a Markov Chain. A Markov Chain has a set of states describing a particular system, and a probability of moving from one state to another along every valid connected state. Markov Chains are memoryless, meaning they don't rely on a long history of previous observations. The current state of a system depends only on the previous state and the results of a random outcome. Markov Chains are a useful way method for describing non-deterministic systems. They are useful for destribing the state and transition model of a stochastic system. As examples of Markov Chains, we discuss stop light signals, bowling, and text prediction systems in light of whether or not they can be described with Markov Chains.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.