In this episode, the data scientist Wentao Su shares his experience in AB testing on social media platforms like LinkedIn and TikTok. We talk about how network science can enhance AB testing by accounting for complex social interactions, especially in environments where users are both viewers and content creators. These interactions might cause a "spillover effect" meaning a possible influence across experimental groups, which can distort results. To mitigate this effect, our guest presents heuristics and algorithms they developed ("one-degree label propagation") to allow for good results on big data with minimal running time and so optimize user experience and advertiser performance in social media platforms.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
NPR News: 12-08-2025 2AM EST
08 Dec 2025
NPR News Now
NPR News: 12-07-2025 11PM EST
08 Dec 2025
NPR News Now
NPR News: 12-07-2025 10PM EST
08 Dec 2025
NPR News Now
Meidas Health: AAP President Strongly Pushes Back on Hepatitis B Vaccine Changes
08 Dec 2025
The MeidasTouch Podcast
Democrat Bobby Cole Discusses Race for Texas Governor
07 Dec 2025
The MeidasTouch Podcast
Fox News Crashes Out on Air Over Trump’s Rapid Fall
07 Dec 2025
The MeidasTouch Podcast