Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

Earthly Machine Learning

AI-empowered Next-Generation Multiscale Climate Modelling for Mitigation and Adaptation

25 Apr 2025

Description

🎙️ Episode 24: AI-empowered Next-Generation Multiscale Climate Modelling for Mitigation and Adaptation🔗 DOI: https://doi.org/10.1038/s41561-024-01527-w🌐 AbstractDespite decades of progress, Earth system models (ESMs) still face significant gaps in accuracy and uncertainty, largely due to challenges in representing small-scale or poorly understood processes. This episode explores a transformative vision for next-generation climate modeling—one that embeds AI across multiple scales to enhance resolution, improve model fidelity, and better inform climate mitigation and adaptation strategies.📌 Bullet points summaryExisting ESMs struggle with inaccuracies in climate projections due to subgrid-scale and unknown process limitations.A new approach is proposed that blends AI with multiscale modeling, combining fine-resolution simulations with coarser hybrid models that capture key Earth system feedbacks.This strategy is built on four pillars:Higher resolution via advanced computingPhysics-aware machine learning to enhance hybrid modelsSystematic use of Earth observations to constrain modelsModernized scientific infrastructure to operationalize insightsAims to deliver faster, more actionable climate data to support urgent policy needs for both mitigation and adaptation.Envisions hybrid ESMs and interactive Earth digital twins, where AI helps simulate processes more realistically and supports climate decision-making at scale.💡 The Big IdeaIntegrating AI into climate models across scales is not just an upgrade—it’s a shift towards smarter, faster, and more adaptive climate science, essential for responding to the climate crisis with precision and urgency.📖 CitationEyring, Veronika, et al. "AI-empowered next-generation multiscale climate modelling for mitigation and adaptation." Nature Geoscience 17.10 (2024): 963–971.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.