Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

Earthly Machine Learning

Climate in a Bottle: Towards a Generative Foundation Model for the Kilometer-Scale Global Atmosphere

23 Nov 2025

Description

Climate in a Bottle: Towards a Generative Foundation Model for the Kilometer-Scale Global Atmosphere(By Noah D. Brenowitz, Tao Ge, Akshay Subramaniam, Peter Manshausen, Aayush Gupta, David M. Hall, Morteza Mardani, Arash Vahdat, Karthik Kashinath, Michael S. Pritchard, NVIDIA* The paper introduces **Climate in a Bottle (cBottle)**, a generative diffusion-based AI framework capable of synthesizing full global atmospheric states at an unprecedented $\mathbf{5 \text{ km resolution}}$ (over 12.5 million pixels per sample). Unlike prevailing auto-regressive paradigms, cBottle samples directly from the full distribution of atmospheric states without requiring a previous time step, thereby avoiding issues like drifts and instabilities inherent to time-stepping models.* cBottle utilizes a **two-stage cascaded diffusion approach**: a global coarse-resolution generator conditioned on minimal climate-controlling inputs (such as monthly sea surface temperature and solar position), followed by a patch-based 16x super-resolution module.* The model demonstrates **foundational versatility** by being trained jointly on multiple data modalities, including ERA5 reanalysis and ICON global cloud-resolving simulations. This enables various zero-shot applications such as climate downscaling, channel infilling for missing or corrupted variables, bias correction between datasets, and translation between these modalities.* cBottle proposes a new form of **interactive climate modeling** through the use of guided diffusion. By training a classifier alongside the generator, users can steer the model to conditionally generate physically plausible **extreme weather events, such as Tropical Cyclones**, at specified locations on demand, circumventing the need to sift through petabytes of output to find rare events.* The model exhibits **high climate faithfulness** across a battery of tests, including reproducing diurnal-to-seasonal scale variability, large-scale modes of variability (like the Northern Annular Mode), and tropical cyclone statistics. Furthermore, it achieves **extreme distillation** by encapsulating massive datasets into a few GB of neural network weights, offering a 256x compression ratio per channel.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.