๐๏ธ Episode 25: ClimaX: A foundation model for weather and climateDOI: https://doi.org/10.48550/arXiv.2301.10343๐ Abstract:Most cutting-edge approaches for weather and climate modeling rely on physics-informed numerical models to simulate the atmosphere's complex dynamics. These methods, while accurate, are often computationally demanding, especially at high spatial and temporal resolutions. In contrast, recent machine learning methods seek to learn data-driven mappings directly from curated climate datasets but often lack flexibility and generalization. ClimaX introduces a versatile and generalizable deep learning model for weather and climate science, capable of learning from diverse, heterogeneous datasets that cover various variables, time spans, and physical contexts.๐ Bullet points summary:ClimaX is a flexible foundation model for weather and climate, overcoming the rigidity of physics-based models and the narrow focus of traditional ML approaches by training on heterogeneous datasets.The model utilizes Transformer-based architecture with novel variable tokenization and aggregation mechanisms, allowing it to handle diverse climate data efficiently.Pre-trained via a self-supervised randomized forecasting objective on CMIP6-derived datasets, ClimaX learns intricate inter-variable relationships, enhancing its adaptability to various forecasting tasks.Demonstrates strong, often state-of-the-art performance across tasks like multi-scale weather forecasting, climate projections (ClimateBench), and downscaling โ sometimes outperforming even operational systems like IFS.The study highlights ClimaX's scalability, showing performance gains with more pretraining data and higher resolutions, underscoring its potential for future developments with increased data and compute resources.๐ก Big idea:ClimaX represents a shift toward foundation models in climate science, offering a single, adaptable architecture capable of generalizing across a wide array of weather and climate modeling tasks โ setting the stage for more efficient, data-driven climate research.๐ Citation:Nguyen, Tung, et al. "Climax: A foundation model for weather and climate." arXiv preprint arXiv:2301.10343 (2023).
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
3ยช PARTE | 17 DIC 2025 | EL PARTIDAZO DE COPE
01 Jan 1970
El Partidazo de COPE
13:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
12:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
10:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
13:00H | 20 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
12:00H | 20 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana