Earthly Machine Learning
Do AI models produce better weather forecasts than physics-based models? A quantitative evaluation case study of Storm Ciarán
03 Aug 2025
"Do AI models produce better weather forecasts than physics-based models? A quantitative evaluation case study of Storm Ciarán" By Andrew J. Charlton-Perez, Helen F. Dacre, Simon Driscoll, Suzanne L. Gray, Ben Harvey, Natalie J. Harvey, Kieran M. R. Hunt, Robert W. Lee, Ranjini Swaminathan, Remy Vandaele & Ambrogio Volonté. Published in partnership with CECCR at King Abdulaziz University, Nature, DOI: 10.1038/s41612-024-00638-w.Here are the main takeaways from the paper:• AI models (FourCastNet, Pangu-Weather, GraphCast, FourCastNet-v2) demonstrate strong capabilities in capturing large-scale dynamical drivers vital for rapid storm development, such as the storm's position relative to upper-level jets. They also accurately reproduce the larger synoptic-scale structure of cyclones like Storm Ciarán, including the cloud head's position and the warm sector's shape. Despite these strengths, AI models consistently underestimate the peak amplitude of winds, both at the surface and in the free atmosphere, associated with storms. They also struggle to resolve detailed structures crucial for issuing severe weather warnings, such as sharp bent-back warm frontal gradients, and show variable success in capturing warm core seclusion. The underestimation of strong winds is not a consequence of the AI models' output resolution or their training data. This discrepancy persists even when compared against ERA5 (on which these models were trained) and numerical weather prediction (NWP) models of similar resolution, suggesting a more fundamental limitation in their ability to represent intense wind features.The case study of Storm Ciarán highlights the pressing need for a more comprehensive assessment of machine learning weather forecasts. Moving beyond isolated error metrics to evaluate all relevant spatio-temporal features of physical phenomena is essential for identifying specific areas for improvement and fostering rapid advancements in this new and potentially transformative forecasting tool.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
3ª PARTE | 17 DIC 2025 | EL PARTIDAZO DE COPE
01 Jan 1970
El Partidazo de COPE
13:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
12:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
10:00H | 21 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
13:00H | 20 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana
12:00H | 20 DIC 2025 | Fin de Semana
01 Jan 1970
Fin de Semana