Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

The Daily AI Show

Is Training Your Own LLM Worth The Risk?

09 Aug 2024

Description

In today's episode of the Daily AI Show, Andy, Jyunmi, and Karl explored the complexities and risks associated with training your own Large Language Model (LLM) from scratch versus fine-tuning an existing model. They highlighted the challenges that companies face in making these decisions, especially considering the advancements in frontier models like GPT-4. Key Points Discussed: The Bloomberg GPT Example The discussion began with Bloomberg's attempt to create its own AI model from scratch using an enormous dataset of 350 billion financial parameters. While this approach provided them with a highly specialized model, the advent of GPT-4, which surpassed their model in capability, led Bloomberg to pivot towards fine-tuning existing models rather than continuing with their proprietary development. Cost and Complexity of Building LLMs Karl emphasized the significant costs involved in training LLMs, citing Bloomberg's expenditure, and the growing need for enterprises to consider whether these investments yield sufficient returns. They discussed how companies that have created their own LLMs often face challenges in keeping these models up-to-date and competitive against rapidly evolving frontier models. Security and Control Considerations The co-hosts debated the trade-offs between using third-party models and developing proprietary ones. While third-party models like ChatGPT for Enterprise offer robust features with strong security measures, some enterprises prefer developing their own models to maintain greater control over their data and the LLM’s functionality. Emergence of AI Agents Karl and Andy touched on the future role of AI agents, which could further disrupt the need for bespoke LLMs. These agents, with the ability to autonomously perform complex tasks, could reduce the reliance on custom-trained LLMs by offering high levels of functionality out of the box, further questioning the value of training models from scratch. Data Curation and Quality Andy highlighted the importance of high-quality, curated datasets in training LLMs. The hosts discussed ongoing initiatives like MIT's Data Providence Initiative, which aims to improve the quality of data used in training AI models, ensuring better performance and reducing biases. Looking Forward The episode concluded with reflections on the rapidly evolving AI landscape, suggesting that while custom LLMs may have niche applications, the broader trend is moving towards leveraging existing models and augmenting them with fine-tuning and specialized data curation.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.