The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)
Dynamic Token Merging for Efficient Byte-level Language Models with Julie Kallini - #724
24 Mar 2025
Today, we're joined by Julie Kallini, PhD student at Stanford University to discuss her recent papers, “MrT5: Dynamic Token Merging for Efficient Byte-level Language Models” and “Mission: Impossible Language Models.” For the MrT5 paper, we explore the importance and failings of tokenization in large language models—including inefficient compression rates for under-resourced languages—and dig into byte-level modeling as an alternative. We discuss the architecture of MrT5, its ability to learn language-specific compression rates, its performance on multilingual benchmarks and character-level manipulation tasks, and its performance and efficiency. For the “Mission: Impossible Language Models” paper, we review the core idea behind the research, the definition and creation of impossible languages, the creation of impossible language training datasets, and explore the bias of language model architectures towards natural language. The complete show notes for this episode can be found at https://twimlai.com/go/724.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
NPR News: 12-08-2025 2AM EST
08 Dec 2025
NPR News Now
NPR News: 12-07-2025 11PM EST
08 Dec 2025
NPR News Now
NPR News: 12-07-2025 10PM EST
08 Dec 2025
NPR News Now
Meidas Health: AAP President Strongly Pushes Back on Hepatitis B Vaccine Changes
08 Dec 2025
The MeidasTouch Podcast
Democrat Bobby Cole Discusses Race for Texas Governor
07 Dec 2025
The MeidasTouch Podcast
Fox News Crashes Out on Air Over Trump’s Rapid Fall
07 Dec 2025
The MeidasTouch Podcast