Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

Zero-Shot Auto-Labeling: The End of Annotation for Computer Vision with Jason Corso - #735

10 Jun 2025

Description

Today, we're joined by Jason Corso, co-founder of Voxel51 and professor at the University of Michigan, to explore automated labeling in computer vision. Jason introduces FiftyOne, an open-source platform for visualizing datasets, analyzing models, and improving data quality. We focus on Voxel51’s recent research report, “Zero-shot auto-labeling rivals human performance,” which demonstrates how zero-shot auto-labeling with foundation models can yield to significant cost and time savings compared to traditional human annotation. Jason explains how auto-labels, despite being "noisier" at lower confidence thresholds, can lead to better downstream model performance. We also cover Voxel51's "verified auto-labeling" approach, which utilizes a "stoplight" QA workflow (green, yellow, red light) to minimize human review. Finally, we discuss the challenges of handling decision boundary uncertainty and out-of-domain classes, the differences between synthetic data generation in vision and language domains, and the potential of agentic labeling. The complete show notes for this episode can be found at https://twimlai.com/go/735.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.