这篇文章对数字病理学中的基础模型(FM)进行了系统性调查,重点关注其对非生物技术特征(如扫描仪或染色差异)的鲁棒性。作者提出了 PathoROB 基准,包含三个新指标(如鲁棒性指数)和四个多中心数据集,旨在量化和评估20个现有FM的鲁棒性缺陷。研究发现,FM鲁棒性不足会导致诊断下游任务中出现重大错误,即“巧手汉斯”学习问题,进而妨碍临床安全采用。该工作还提出了 FM 鲁棒化框架,包括图像空间、表示空间和训练鲁棒化方法,以减轻这些缺陷,并强调鲁棒性评估和集成必须成为未来 FM 设计的核心原则。References: Kömen J, de Jong E D, Hense J, et al. Towards Robust Foundation Models for Digital Pathology[J]. arXiv preprint arXiv:2507.17845, 2025.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
Trump $82 Million Bond Spree, Brazil Tariffs 'Too High,' More
16 Nov 2025
Bloomberg News Now
Ex-Fed Gov Resigned After Rules Violations, Trump Buys $82 Mil of Bonds, More
16 Nov 2025
Bloomberg News Now
THIS TRUMP INTERVIEW WAS INSANE!
16 Nov 2025
HasanAbi
Epstein Emails and Trump's Alleged Involvement
15 Nov 2025
Conspiracy Theories Exploring The Unseen
New Epstein Emails Directly Implicate Trump - H3 Show #211
15 Nov 2025
H3 Podcast
Trump Humiliates Himself on FOX as They Call Him Out
15 Nov 2025
IHIP News