该研究文章介绍了 AAnet,这是一种用于单细胞转录组学数据的神经网络,旨在通过原型分析 (AA) 来解决肿瘤内的异质性问题。文章指出,传统的聚类和轨迹推断方法难以表征细胞状态的连续性,而AAnet通过学习数据的非线性几何,将细胞状态映射到单纯形潜在空间中,从而识别出代表极端细胞状态的原型 (ATs)。研究人员使用三阴性乳腺癌 (TNBC) 模型和小鼠转移灶数据,发现了五种主要的ATs,例如增殖性和缺氧性ATs,并结合空间转录组学揭示了这些ATs在肿瘤微环境中具有独特的空间组织。最后,通过功能验证,研究证实了缺氧AT对糖酵解的依赖性,特别关注了GLUT3基因,并将其发现与人类乳腺癌样本的ATs进行了比较,突显了AAnet在理解肿瘤细胞状态和指导治疗策略方面的潜力。References: Venkat A, Youlten S E, San Juan B P, et al. AAnet resolves a continuum of spatially-localized cell states to unveil intratumoral heterogeneity[J]. Cancer Discovery, 2025.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
Trump $82 Million Bond Spree, Brazil Tariffs 'Too High,' More
16 Nov 2025
Bloomberg News Now
Ex-Fed Gov Resigned After Rules Violations, Trump Buys $82 Mil of Bonds, More
16 Nov 2025
Bloomberg News Now
THIS TRUMP INTERVIEW WAS INSANE!
16 Nov 2025
HasanAbi
Epstein Emails and Trump's Alleged Involvement
15 Nov 2025
Conspiracy Theories Exploring The Unseen
New Epstein Emails Directly Implicate Trump - H3 Show #211
15 Nov 2025
H3 Podcast
Trump Humiliates Himself on FOX as They Call Him Out
15 Nov 2025
IHIP News