Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

聊聊Sci

169-AAnet揭秘三阴性乳腺癌特征

22 Oct 2025

Description

该研究文章介绍了 AAnet,这是一种用于单细胞转录组学数据的神经网络,旨在通过原型分析 (AA) 来解决肿瘤内的异质性问题。文章指出,传统的聚类和轨迹推断方法难以表征细胞状态的连续性,而AAnet通过学习数据的非线性几何,将细胞状态映射到单纯形潜在空间中,从而识别出代表极端细胞状态的原型 (ATs)。研究人员使用三阴性乳腺癌 (TNBC) 模型和小鼠转移灶数据,发现了五种主要的ATs,例如增殖性和缺氧性ATs,并结合空间转录组学揭示了这些ATs在肿瘤微环境中具有独特的空间组织。最后,通过功能验证,研究证实了缺氧AT对糖酵解的依赖性,特别关注了GLUT3基因,并将其发现与人类乳腺癌样本的ATs进行了比较,突显了AAnet在理解肿瘤细胞状态和指导治疗策略方面的潜力。References: Venkat A, Youlten S E, San Juan B P, et al. AAnet resolves a continuum of spatially-localized cell states to unveil intratumoral heterogeneity[J]. Cancer Discovery, 2025.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.