Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

聊聊Sci

173-TopoLa:增强单细胞数据拓扑结构的学习框架

23 Oct 2025

Description

这篇文章介绍了 TopoLa,这是一个新颖的拓扑编码潜在双曲几何框架,旨在通过捕获细胞间精细的拓扑关系,来增强单细胞和空间组学研究中的 细胞表示。该框架包含两个关键组件:TopoLa 距离 (TLd),用于量化潜在双曲空间中的几何距离,以及 TopoConv,用于通过对具有相似拓扑结构的相邻细胞进行卷积来优化细胞表示。作者通过在七项生物学任务上展示对现有先进模型的显著性能改进,如单细胞 RNA 测序数据聚类和空间转录组学域识别,验证了 TopoLa 的通用性和鲁棒性。研究还详细阐述了 TLd 的物理意义和 TopoConv 增强细胞表示的数学原理。References: Zheng K, Wang S, Xu Y, et al. TopoLa: A Universal Framework to Enhance Cell Representations for Single-cell and Spatial Omics through Topology-encoded Latent Hyperbolic Geometry[J]. bioRxiv, 2025: 2025.07. 23.666288.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.