Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

聊聊Sci

219-GHIST:基于深度学习的单细胞空间基因表达预测

09 Nov 2025

Description

这篇文章介绍了 GHIST,这是一个基于深度学习的框架,旨在从常规收集的组织学图像(如苏木精和伊红染色图像,H&E)中,以单细胞分辨率预测空间基因表达 (SGE)。文章指出,虽然空间分辨转录组学 (SRT) 技术提供了生物学洞察,但其高成本限制了广泛应用,因此 GHIST 通过整合多层生物学信息(包括细胞核形态、细胞类型和邻域组成)来克服现有方法的准确性限制。研究人员通过公共数据集和癌症基因组图谱 (TCGA) 数据验证了 GHIST 的性能,证明它在预测 SGE 方面优于现有的基于斑点的方法,并强调了该框架能够通过体外生成空间组学数据来丰富现有数据库,从而促进可扩展的多组学分析和生物标志物发现。References: Fu X, Cao Y, Bian B, et al. Spatial gene expression at single-cell resolution from histology using deep learning with ghist[J]. Nature Methods, 2025: 1-11.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.