这篇文章介绍了 GHIST,这是一个基于深度学习的框架,旨在从常规收集的组织学图像(如苏木精和伊红染色图像,H&E)中,以单细胞分辨率预测空间基因表达 (SGE)。文章指出,虽然空间分辨转录组学 (SRT) 技术提供了生物学洞察,但其高成本限制了广泛应用,因此 GHIST 通过整合多层生物学信息(包括细胞核形态、细胞类型和邻域组成)来克服现有方法的准确性限制。研究人员通过公共数据集和癌症基因组图谱 (TCGA) 数据验证了 GHIST 的性能,证明它在预测 SGE 方面优于现有的基于斑点的方法,并强调了该框架能够通过体外生成空间组学数据来丰富现有数据库,从而促进可扩展的多组学分析和生物标志物发现。References: Fu X, Cao Y, Bian B, et al. Spatial gene expression at single-cell resolution from histology using deep learning with ghist[J]. Nature Methods, 2025: 1-11.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
Trump $82 Million Bond Spree, Brazil Tariffs 'Too High,' More
16 Nov 2025
Bloomberg News Now
Ex-Fed Gov Resigned After Rules Violations, Trump Buys $82 Mil of Bonds, More
16 Nov 2025
Bloomberg News Now
THIS TRUMP INTERVIEW WAS INSANE!
16 Nov 2025
HasanAbi
Epstein Emails and Trump's Alleged Involvement
15 Nov 2025
Conspiracy Theories Exploring The Unseen
New Epstein Emails Directly Implicate Trump - H3 Show #211
15 Nov 2025
H3 Podcast
Trump Humiliates Himself on FOX as They Call Him Out
15 Nov 2025
IHIP News