这篇文章介绍了一种名为 STORIES 的新型计算方法,旨在利用 最优传输 (Optimal Transport, OT) 框架,从随时间变化的空间转录组学数据中推断细胞命运轨迹。STORIES 克服了现有梯度流学习方法在处理空间信息方面的挑战,通过使用 融合 Gromov-Wasserstein (Fused Gromov-Wasserstein, FGW) 扩展,学习一个考虑到空间上下文的 分化势能 (differentiation potential)。文章通过对蝾螈神经再生和小白鼠胶质细胞生成等多个大型时空图谱的基准测试,证明了 STORIES 在预测基因表达和保持空间一致性方面优于现有技术,并成功识别了这些生物过程中的 已知和推定的驱动基因及转录调节因子。References: Huizing G J, Samaran J, Capocefalo D, et al. STORIES: learning cell fate landscapes from spatial transcriptomics using optimal transport[J]. Nature Methods, 2025: 1-10.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
Trump $82 Million Bond Spree, Brazil Tariffs 'Too High,' More
16 Nov 2025
Bloomberg News Now
Ex-Fed Gov Resigned After Rules Violations, Trump Buys $82 Mil of Bonds, More
16 Nov 2025
Bloomberg News Now
THIS TRUMP INTERVIEW WAS INSANE!
16 Nov 2025
HasanAbi
Epstein Emails and Trump's Alleged Involvement
15 Nov 2025
Conspiracy Theories Exploring The Unseen
New Epstein Emails Directly Implicate Trump - H3 Show #211
15 Nov 2025
H3 Podcast
Trump Humiliates Himself on FOX as They Call Him Out
15 Nov 2025
IHIP News