Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

AI Breakdown

ICCV 2023 - Diffusion Models as Masked Autoencoders

06 Oct 2023

Description

In this episode we discuss Diffusion Models as Masked Autoencoders by Chen Wei, Karttikeya Mangalam, Po-Yao Huang, Yanghao Li, Haoqi Fan, Hu Xu, Huiyu Wang, Cihang Xie, Alan Yuille, Christoph Feichtenhofer. The authors present a method called Diffusion Models as Masked Autoencoders (DiffMAE) that combines generative pre-training with diffusion models for visual data. They show that DiffMAE can be a strong initialization for recognition tasks, perform high-quality image inpainting, and achieve state-of-the-art classification accuracy for video. The paper emphasizes the need to consider the specific challenges and requirements of downstream tasks when using generative pre-training.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.