Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

AI可可AI生活

AI前沿:让语言模型更聪明、更可靠、更高效

12 Feb 2025

Description

本期精华汇总: On the Emergence of Thinking in LLMs I: Searching for the Right Intuition:  提出自弈强化学习框架(RLSP),通过解耦探索奖励和正确性奖励,有效提升了大型语言模型的推理能力,使其涌现出复杂推理行为。 Confidence Improves Self-Consistency in LLMs: 提出置信度引导的自洽性策略(CISC),利用模型自身置信度进行加权投票,显著提升了自洽性解码的效率和性能。 Optimizing Temperature for Language Models with Multi-Sample Inference: 提出TURN自动化温度优化方法,基于熵转折点自动选择最优温度,无需验证数据,高效提升了语言模型多样本推理性能。 ReasonFlux: Hierarchical LLM Reasoning via Scaling Thought Templates: 提出ReasonFlux分层推理框架,通过扩展思维模板进行分层推理,显著提升了大型语言模型在复杂数学推理任务上的能力,超越现有SOTA模型。 DeepCrossAttention: Supercharging Transformer Residual Connections: 提出DeepCrossAttention(DCA)机制,改进Transformer残差连接,通过动态组合层输出,提升了模型性能、训练效率和稳定性。完整推介:https://mp.weixin.qq.com/s/lxd5jQrpQRz06Ogd0_xdiw

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.