[LG] Reinforcement Learning Teachers of Test Time Scaling E Cetin, T Zhao, Y Tang [Sakana AI] 本文通过提出强化学习教师(RLTs)框架,创新性地将RL教师模型的任务设定为在已知问题和答案的前提下生成优质解释,并利用基于学生理解度的密集奖励进行训练,从而高效地生成了无需后处理的高质量蒸馏数据,不仅显著提升了下游学生模型在复杂推理任务上的性能,甚至在零样本跨领域迁移和RL冷启动方面取得了超越传统方法的反直觉成果。https://arxiv.org/abs/2506.08388
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
SpaceX Said to Pursue 2026 IPO
10 Dec 2025
Bloomberg Tech
Don’t Call It a Comeback
10 Dec 2025
Motley Fool Money
Japan Claims AGI, Pentagon Adopts Gemini, and MIT Designs New Medicines
10 Dec 2025
The Daily AI Show
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
What it will take for AI to scale (energy, compute, talent)
10 Dec 2025
Azeem Azhar's Exponential View
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast