If a CEO wants to know the state of their business, they ask their highest ranking executives. These executives, in turn, should know the state of the business through reports from their subordinates. This structure is roughly analogous to a process observed in deep learning, where each layer of the business reports up different types of observations, KPIs, and reports to be interpreted by the next layer of the business. In deep learning, this process can be thought of as automated feature engineering. DNNs built to recognize objects in images may learn structures that behave like edge detectors in the first hidden layer. Proceeding layers learn to compose more abstract features from lower level outputs. This episode explore that analogy in the context of automated feature engineering. Linh Da and Kyle discuss a particular image in this episode. The image included below in the show notes is drawn from the work of Lee, Grosse, Ranganath, and Ng in their paper Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
SpaceX Said to Pursue 2026 IPO
10 Dec 2025
Bloomberg Tech
Don’t Call It a Comeback
10 Dec 2025
Motley Fool Money
Japan Claims AGI, Pentagon Adopts Gemini, and MIT Designs New Medicines
10 Dec 2025
The Daily AI Show
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
What it will take for AI to scale (energy, compute, talent)
10 Dec 2025
Azeem Azhar's Exponential View
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast