In statistics, two random variables might depend on one another (for example, interest rates and new home purchases). We call this conditional dependence. An important related concept exists called conditional independence. This phrase describes situations in which two variables are independent of one another given some other variable. For example, the probability that a vendor will pay their bill on time could depend on many factors such as the company's market cap. Thus, a statistical analysis would reveal many relationships between observable details about the company and their propensity for paying on time. However, if you know that the company has filed for bankruptcy, then we might assume their chances of paying on time have dropped to near 0, and the result is now independent of all other factors in light of this new information. We discuss a few real world analogies to this idea in the context of some chance meetings on our recent trip to New York City.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
SpaceX Said to Pursue 2026 IPO
10 Dec 2025
Bloomberg Tech
Don’t Call It a Comeback
10 Dec 2025
Motley Fool Money
Japan Claims AGI, Pentagon Adopts Gemini, and MIT Designs New Medicines
10 Dec 2025
The Daily AI Show
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
What it will take for AI to scale (energy, compute, talent)
10 Dec 2025
Azeem Azhar's Exponential View
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast