Over the past several years, we have seen many success stories in machine learning brought about by deep learning techniques. While the practical success of deep learning has been phenomenal, the formal guarantees have been lacking. Our current theoretical understanding of the many techniques that are central to the current ongoing big-data revolution is far from being sufficient for rigorous analysis, at best. In this episode of Data Skeptic, our host Kyle Polich welcomes guest John Wilmes, a mathematics post-doctoral researcher at Georgia Tech, to discuss the efficiency of neural network learning through complexity theory.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
SpaceX Said to Pursue 2026 IPO
10 Dec 2025
Bloomberg Tech
Don’t Call It a Comeback
10 Dec 2025
Motley Fool Money
Japan Claims AGI, Pentagon Adopts Gemini, and MIT Designs New Medicines
10 Dec 2025
The Daily AI Show
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
What it will take for AI to scale (energy, compute, talent)
10 Dec 2025
Azeem Azhar's Exponential View
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast