The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)
Advancing Deep Reinforcement Learning with NetHack, w/ Tim Rocktäschel - #527
14 Oct 2021
Take our survey at twimlai.com/survey21! Today we’re joined by Tim Rocktäschel, a research scientist at Facebook AI Research and an associate professor at University College London (UCL). Tim’s work focuses on training RL agents in simulated environments, with the goal of these agents being able to generalize to novel situations. Typically, this is done in environments like OpenAI Gym, MuJuCo, or even using Atari games, but these all come with constraints. In Tim’s approach, he utilizes a game called NetHack, which is much more rich and complex than the aforementioned environments. In our conversation with Tim, we explore the ins and outs of using NetHack as a training environment, including how much control a user has when generating each individual game and the challenges he's faced when deploying the agents. We also discuss his work on MiniHack, an environment creation framework and suite of tasks that are based on NetHack, and future directions for this research. The complete show notes for this episode can be found at twimlai.com/go/527.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
SpaceX Said to Pursue 2026 IPO
10 Dec 2025
Bloomberg Tech
Don’t Call It a Comeback
10 Dec 2025
Motley Fool Money
Japan Claims AGI, Pentagon Adopts Gemini, and MIT Designs New Medicines
10 Dec 2025
The Daily AI Show
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
What it will take for AI to scale (energy, compute, talent)
10 Dec 2025
Azeem Azhar's Exponential View
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast