Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

Applications of Variational Autoencoders and Bayesian Optimization with José Miguel Hernández Lobato - #510

16 Aug 2021

Description

Today we’re joined by José Miguel Hernández-Lobato, a university lecturer in machine learning at the University of Cambridge. In our conversation with Miguel, we explore his work at the intersection of Bayesian learning and deep learning. We discuss how he’s been applying this to the field of molecular design and discovery via two different methods, with one paper searching for possible chemical reactions, and the other doing the same, but in 3D and in 3D space. We also discuss the challenges of sample efficiency, creating objective functions, and how those manifest themselves in these experiments, and how he integrated the Bayesian approach to RL problems. We also talk through a handful of other papers that Miguel has presented at recent conferences, which are all linked at twimlai.com/go/510.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.