Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

Grokking, Generalization Collapse, and the Dynamics of Training Deep Neural Networks with Charles Martin - #734

05 Jun 2025

Description

Today, we're joined by Charles Martin, founder of Calculation Consulting, to discuss Weight Watcher, an open-source tool for analyzing and improving Deep Neural Networks (DNNs) based on principles from theoretical physics. We explore the foundations of the Heavy-Tailed Self-Regularization (HTSR) theory that underpins it, which combines random matrix theory and renormalization group ideas to uncover deep insights about model training dynamics. Charles walks us through WeightWatcher’s ability to detect three distinct learning phases—underfitting, grokking, and generalization collapse—and how its signature “layer quality” metric reveals whether individual layers are underfit, overfit, or optimally tuned. Additionally, we dig into the complexities involved in fine-tuning models, the surprising correlation between model optimality and hallucination, the often-underestimated challenges of search relevance, and their implications for RAG. Finally, Charles shares his insights into real-world applications of generative AI and his lessons learned from working in the field. The complete show notes for this episode can be found at https://twimlai.com/go/734.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.